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1 Introduction

In the traditional, combinatorial formulation of the Traveling Salesman Prob-
lem, we are asking the following question: if we have a list of cities and the
distances between each pair of cities, what is the shortest route possible where
each city is visited exactly once and we return to the city we originated from?
This problem lies more in the realm of theoretical computer science and combi-
natorial optimization and is a popular and well-studied problem in those fields.

Figure 1: Unsolved traveling
salesman problem

Figure 2: Solution to the trav-
eling salesman problem

In this survey paper, we will be focusing on a generalization of the Traveling
Salesman Problem, called the analyst’s Traveling Salesman Problem.

This version is similar to the original problem, but it is over an arbitrary set
of cities, meaning that we can also ask questions like: given a set K, what is
the shortest curve that contains it?

This question and others that came from it were first discussed by Peter
Jones, where the analyst’s version was proved in the Euclidean plane, with the
use of Jones β− numbers. These results were then improved by Okikiolu [4]
where the results were proved in arbitrary Rn. Other results were also given
by Raanan Schul, who proved the theorem to be true in Hilbert spaces [2] and
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Immo Hahlomaa, who extended the proof to general metric spaces using Menger
curvature [6].

Jones proved the case of R2 [3] using techniques mainly from complex anal-
ysis. In generalizing to Rn, and other spaces, Okikiolu, Schul, and Hahlomaa
all took more geometric approaches. Before discussing these approaches and
proofs, we first need to make some definitions.

2 Definitions

Let M denote a metric space with distance function dist : M×M → R. We
will be concerned with sets K ⊂ M such that diam(K) < ∞.

Definition 1 (ϵ-nets and Multi-resolution Family). A set X ⊂ K is an ϵ-net
for K if

(i) ∀ x1, x2 ∈ X we have dist(x1, x2) > ϵ

(ii) ∀ y ∈ K, ∃ x ∈ X such that dist(x, y) ≤ ϵ

For a set X let XK
n denote a sequence of 2−n -nets such that XK

n ⊂ XK
n+1.

We define the multi-resolution family as:

Dk := {Ball(x,A2−n) | x ∈ XK
n , n ∈ Z, n > n0}.

For constants A > A0 > 1 and integer n0.

Definition 2 (Rectifiable Sets and Curves). A set S ⊂ Rn is k-rectifiable if:

Hk(S\
⋃
i

fi(Si)) = 0.

Here fi : Si ⊆ Rk → Rn is a countable collection of Lipschitz functions. A
rectifiable curve is a set that is the image of compact interval under a Lipschitz
function.

3 Analyst’s Traveling Salesman Problem in Rn

3.1 Jones β-Numbers

In order to state the existence and optimality results for the analyst’s traveling
salesman problem, let us define the Jones β-Numbers:

Definition 3 (Jones β-Numbers). For K ⊂ Rn, we consider the set Q that is
a ball or a cube. We define β∞,K as:

β∞,K(Q) =
1

diam(Q)
inf

L line
sup

x∈K∩Q
d(x, L).
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Given a locally finite measure µ and 1 < p < ∞, we additionally define:

βp(Q;µ) :=
1

diam(Q)
inf

L line

(∫
Q

(d(x, L))p
dµ(y)

µ(Q)

)1/p

.

The Jones β-number is a scale-invariant quantity which measures non-flatness
of K or support of µ.

3.2 Existence and optimality

We state the existence of (nearly) optimal solution to the Analyst’s traveling
salesman problem.

Theorem 1 (Existence). Suppose A0 is large enough. Given a set K ⊂ Rn,
there exists a connected set Γ0 ⊂ K such that the length of Γ0 satisfies:

H1(Γ0) ≲ diam(K) +
∑
DK

β2
∞,Γ(Q) diam(Q)

Theorem 2 (Optimality). For any connected set Γ ⊂ Rn such that Γ ⊇ K we
have: ∑

DK

β2
∞,Γ(Q) diam(Q) ≲ H1(Γ)

It is well known that for any connected Γ ⊆ Rn, there exists a path γ : I → Γ
which is surjective and the length of γ is 2H1(Γ). Therefore, the length of a
solution to the analyst’s traveling salesman problem is comparable to

min{H1(Γ) : Γ is connected,K ⊆ Γ}

By the two results stated above, this is comparable to

diam(K) +
∑
DK

β2
∞,Γ(Q) diam(Q)

3.3 Sketch of the proof

Proof sketch of existence. The goal is to construct a connected set Γ0 ⊃ K
whose 1-dimensional Hausdorff measure is controlled by the sum of squared
Jones β-numbers across a multiresolution family of cubes. The approach builds
on the geometric idea that a rectifiable curve is, in some averaged sense, flat at
most locations and scales.

We begin by covering the compact setK ⊂ Rn using a multiresolution family
DK of dyadic cubes, constructed via a nested sequence of ε-nets. For each cube
Q ∈ DK , the β∞-number measures how far the set Γ ∩ Q deviates from being
contained in a line. The total deviation over all cubes, weighted by diam(Q),
serves as a proxy for the “complexity” of connecting K.

To construct the curve Γ0, we analyze K at multiple scales using a multires-
olution family of dyadic cubes. In those cubes where the β-number is small, the
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intersection Γ ∩ Q is close to a line segment, and we can connect points using
short paths that follow a best-fitting line. The sum

∑
Q β2(Q) diam(Q) captures

the total contribution from these nearly flat regions. In the remaining “non-
flat” cubes, where the set deviates more significantly from a straight line, the
construction is more delicate: geometric decompositions, dyadic packing, and
straight-segment approximations are used to join points while still keeping the
total added length under control. The key is to show that even these irregular
regions do not contribute excessively to the total length, allowing us to bound
H1(Γ0) by a multiple of diam(K) +

∑
Q β2(Q) diam(Q).

Finally, the local segments are pieced together into a connected set Γ0 con-
tained in K. A covering argument ensures that the construction does not create
excessive overlap, and the resulting curve satisfies

H1(Γ0) ≲ diam(K) +
∑

Q∈DK

β2
∞,Γ(Q) diam(Q),

as desired.

Proof sketch of optimality. From results in abstract graphs and a compactness
property, we get a Lipschitz parametrization of Γ, γ : [0, 1] → Γ where the Lips-
chitz norm is bounded by a constant times the length – given by one dimensional
Hausdorff measure – of Γ. This γ is then fixed throughout the proof.

We begin by first assuming that for every x ∈ Γ and for r ≥ 0, γ−1(Ball(x, r))
has only one connected component. By assuming this we can actually change the
question from one of bounding

∑
β2(Q)diam(Q), to one of the geometry of the

image under γ of a multiresolution on the domain of γ. Then using successive
approximations and inequality in the Euclidean case or using the definition of
β in the metric case, one is able to get the inequality.

The case where the above assumption cannot be made is far more difficult
to deal with. With such cases, one can consider the case where Γ ∩ Q is a
collection of straight line segments where the endpoints are outside the ball.
With this consideration, the proof can proceed. It was here the Jones used
complex analysis techniques and Okikiolu used geometric ones. Schul was able
to extend these techniques even further, and we will be using their language.
For a ball Q that satisfies these conditions, a weight wQ can be assigned to the
set Γ ∩Q. This weight is assigned in such a way that for every Q,∫

wQdH1|Γ ≥ β2(Q)diam(Q) (1)

and for every x,
∑

Q wQ(x) ≤ 1. In doing so,
∫
wQdH2|Γ controls β(Q)diam(Q).

The sum and integral can then be exchanged, giving us the desired bound.

3.4 Ahlfors regularity

By making an additional regularity assumption on K, we can strengthen the
previous results. To begin with, we define
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Definition 4 (Ahlfors-Regularity). A set K is k-Ahlfors-Regular if there is a
C > 0 such that for all x ∈ K and 0 < r < diam(K) we have:

rk

C
≤ Hk|K(Br(x)) ≤ Crk.

Using Ahlfors-Regularity, David-Semmes [5] proved the following result which
is a variation of theorems 1 and 2.

Theorem 3 Let K ⊂ Rd be a 1-Ahlfors-Regular set and 1 ≤ q ≤ ∞. Then K
is contained in a connected 1-Ahlfors-Regular set if and only if for all z ∈ K
and 0 < R < diam(K)∫ R

0

∫
Ball(z,R)

βq,H1|K (Ball(x, t))2 dH1|K(x)
dt

t
≲ R.

Proof Sketch. First, suppose that K is contained in a connected 1-Ahlfors-
Regular set Γ0. In this case, most small-scale views of Γ0 resemble straight
line segments, and the local flatness βq is small outside a controlled collection of
scales and positions. Using a packing argument, we find that the collection of
balls where flatness is large satisfies a Carleson condition, leading to a bounded
square function integral. Since K ⊂ Γ0, the same integral bound applies when
the integration is restricted to K.

Conversely, suppose the square function estimate holds for K. The goal is
to construct a connected 1-Ahlfors-Regular curve Γ0 containing K. The proof
uses a stopping-time argument and corona decomposition: at each scale, balls
(or cubes) are classified as “good” when the local flatness is small and “bad”
otherwise. In good regions, the set is nearly flat and can be locally connected
using short segments approximating the geometry of K. The bad regions are
controlled by the Carleson-type bound implicit in the square function estimate,
which ensures that their contribution to the total length is quantitatively small.

By systematically connecting nearby points using these local structures and
patching the components through both good and bad regions, one constructs a
connected set Γ0 containing K. The construction ensures that Γ0 is 1-Ahlfors-
Regular.

4 Generalizations

These ideas were extended even further by Hahlomaa who was able to show
affirmative results in a general metric spaces using something called Menger
curvature.

Definition 5 (Menger Curvature). Let x1, x2, x3 ∈ Rm be non-collinear points,
and let R be the radius of the circle that contains these points. We define the
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Menger curvature to be the reciprocal of the this radius:

c(x1, x2, x3) =
1

R
.

If x1, x2, x3 are collinear then we define c(x1, x2, x3) = 0.

Theorem 4 Suppose A0 is large enough. LetM be a metric space. LetK ⊂ M.
Let Q ∈ DK . Define

β2
M,∞,K(Q) diam(Q) = diam(Q)3 sup

x1,x2,x3∈Q
dist(xi,xj)≥A−1diam(Q)

c2(x1, x2, x3).

Then there exists K ′ ⊂ [0, 1] and a function f : K ′ → K such that

∥f∥Lip ≲ diam(K) +
∑
DK

β2
M,∞,K(Q) diam(Q)

and Image(f) = K.

Proof sketch. The main idea is to construct a sequence of approximating graphs
Gj with controlled total length and edge weights derived from Menger curvature.
These graphs are built iteratively using a net (∆k)k∈Z of K, and each Gj con-
nects a finite number of points with special care to preserve ordering and control
angles (to respect the geometric curvature condition). The graphs are updated
using four combinatorial cases depending on local geometric configurations and
the behavior of the Menger curvature function β.

Each step ensures that the total graph length does not increase too quickly
and that a connected structure is maintained. A key technical step is show-
ing that the constructed graphs Gj satisfy certain geometric and combinatorial
properties, allowing the control of the Lipschitz constant in the limit.

Eventually, the graphs converge in a suitable sense, and a limit Lipschitz map
f is defined from [0, 1] to K. The Lipschitz constant of this map is bounded by
a constant multiple of β(K) + diam(K), completing the proof.

5 Conclusion

The Analyst’s TSP is a generalization of the classical TSP, extending it from a
finite, discrete setting to arbitrary metric spaces. Through the use of techniques
and concepts such as the Jones’ β−number, Ahlfors-Regularity, and Menger
curvature, we can characterize and control the rectifiability of sets.

These ideas, using the Jones’ β−number was first introduced by Peter Jones,
and then furthered by Okikiolu, Schul, Hahlomaa, and many others.
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